Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction.

نویسندگان

  • B C Berk
  • T A Brock
  • R C Webb
  • M B Taubman
  • W J Atkinson
  • M A Gimbrone
  • R W Alexander
چکیده

Atherosclerotic arteries have enhanced reactivity to vasoconstrictors, which suggests that features of the atherosclerotic process itself may result in this abnormal responsiveness. Since vascular smooth muscle proliferation is a prominent feature of atherosclerosis, we postulated that vasoactive agonists and smooth muscle mitogens may share certain common cellular mechanisms of action which potentially contribute to this hyperreactivity. To test this hypothesis, we studied the effects of epidermal growth factor (EGF), a well-characterized mitogen, on rat aortic vascular smooth muscle, both in intact aortic strips and in culture. EGF caused contraction (EC50 = 19 nM) of rat aortic strips which maximally was equivalent to 40% of that induced by angiotensin II, a potent vasoconstrictor. EGF increased 45Ca efflux (EC50 = 3 nM) from cultured rat aortic smooth muscle cells, which was an effect shared by angiotensin II and thought to reflect increased cytosolic-free calcium concentration. EGF (7.5 nM) also stimulated growth of these cultured cells to the same extent as 10% calf serum. These results demonstrate that EGF is both a vasoconstrictor and mitogen for rat aortic smooth muscle cells. The similarities in the effects of EGF and angiotensin II suggest that certain common intracellular mechanisms of action may exist for vasoactive agonists and growth factors which may contribute to the altered vasoreactivity of atherosclerotic vessels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epidermal growth factor: a potent vasoconstrictor in experimental hypertension.

We have tested the hypothesis that growth factor signaling pathways are augmented in hypertension, a disease associated with vascular smooth muscle cell growth. Thoracic aorta was dissected from deoxycorticosterone acetate-salt (DOCA-salt) and one kidney, one clip (1K, 1C) hypertensive rats and from sham normotensive rats for use in isolated tissue bath experiments. Systolic blood pressure was ...

متن کامل

Epidermal growth factor induces vasoconstriction through the phosphatidylinositol 3-kinase-mediated mitogen-activated protein kinase pathway in hypertensive rats.

We investigated whether increased contractile responsiveness to epidermal growth factor (EGF) is associated with altered activation of mitogen-activated protein kinase (MAPK) in the aortic smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. EGF induced contraction and MAPK activity in aortic smooth muscle strips, which were significantly increased in tissues from the DOC...

متن کامل

Glucocorticoid-related signaling effects in vascular smooth muscle cells.

Mineralocorticoid receptor blockade protects from angiotensin II-induced target-organ damage. 11beta-Hydroxysteroid dehydrogenase type 2 protects the mineralocorticoid receptor from activation by glucocorticoids; however, high glucocorticoid concentrations and absent 11beta-hydroxysteroid dehydrogenase type 2 in some tissues make glucocorticoids highly relevant mineralocorticoid receptor ligand...

متن کامل

Epiregulin is a potent vascular smooth muscle cell-derived mitogen induced by angiotensin II, endothelin-1, and thrombin.

Vasoactive GTP-binding protein-coupled receptor agonists such as angiotensin II (AII), endothelin-1 (ET-1), and alpha-thrombin (alpha-Thr) have been reported to indirectly stimulate vascular smooth muscle cell (VSMC) proliferation by regulating the expression of one or more autocrine growth factors. Using ion-exchange, gel-filtration, and reverse-phase chromatographic purification methods, we i...

متن کامل

Abnormalities in growth characteristics of aortic smooth muscle cells in spontaneously hypertensive rats.

Comparative studies have shown that cultured vascular smooth muscle cells from spontaneously hypertensive rats (SHR) proliferate to a higher cell number, grow to a greater density, and have greater specific growth rate, particularly at a higher saturation density, than those of the normotensive Wistar-Kyoto (WKY) control rats. The growth difference was not due to varying cell survival nor to at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 75 3  شماره 

صفحات  -

تاریخ انتشار 1985